JOURNAL OF KUNMING METALLURGY COLLEGE ›› 2015, Vol. 31 ›› Issue (5): 78-83.DOI: 10. 3969/j. issn. 1009—0479.2015.05.015
Previous Articles Next Articles
LI Wen-jin
Received:
Online:
Published:
Abstract:
In the process of remanufacturing reverse logistics,there are many factors that affect the level of waste product recycling,the qualitative factors and quantitative factors,so the whole system is quite complicated. Based on statistical method of quantitative prediction modeling technology can't be used to forecast this kind of complex system incomplete,irregular data because this kind of model can't adapt to environmental changes or by the changing structure of the system itself caused by the nonlinear system. Therefore,it should be used to study the parameters of the non-network model to adjust the modeling technology to predict its uncertainty. In this paper, the fuzzy neural network theory is used to study the remanufacturfing reverse logistics model. Prediction models of waste product recovery time interval and the waste recovery yield are established. The two models can be adjusted by the data,which can directly obtain the change of the product sales,the amount of simulation and predict recovery yield with the change of time.
Key words: waste products, remanufacturing, reverse logistics, fuzzy neural network
CLC Number:
F252|TP1
LI Wen-jin. Remanufacturing Fuzzy Neural Network Model Based on Reverse Logistics[J]. JOURNAL OF KUNMING METALLURGY COLLEGE, 2015, 31(5): 78-83.
0 / / Recommend
Add to citation manager EndNote|Ris|BibTeX
URL: http://kmyzxb.magtech.com.cn/EN/10. 3969/j. issn. 1009—0479.2015.05.015
http://kmyzxb.magtech.com.cn/EN/Y2015/V31/I5/78
[1]LEESC,LEEET.Fuzzysetsandneuralnetworks[J].JournalofCybemetics.1974(4):83-103. [2]MAMDANIEH,ASSILIANS.Anexperimentinlinguisticsynthesiswithafuzzylogiccontroller[J].IntemmionJoumalofMan-MachineStudies.1975,7(1):1-13. [3]陈果.不确定环境下再制造逆向物流网络优化设计问题研究[D].长沙:中南大学,2008. [4]张玲.不确定环境下逆向物流系统的构建与优化[D].杭州:浙江大学,2014. [5]游金松.废旧产品再制造逆向物流管理策略研究[D].武汉:武汉理工大学,2007. [6]刘运,赵严,周肖,等.考虑不同产品的再制造决策系统设计初探[J].物流工程与管理,2014(9):97-99. [7]王华强,程智超.模糊神经网络控制器在DMF回收系统的设计与应用[J].化工自动化及仪表,2015(3):292-295,309. [8]束慧敏.逆向物流的价值分析及运作模式[J].智富时代,2015(3):27. [9]曹西京,张婕.我国废品回收物流有效化管理建议[J].物流科技,2009(5):122-124. [10]伍星华,王旭,代应,等.再制造闭环物流网络的多周期优化设计模型[J].计算机集成制造系统,2011(9):2015-2021. [11]马祖军,代颖,刘飞.制造/再制造混合系统中集成物流网络优化设计模型研究[J].计算机集成制造系统,2005(11):1551-1557. [12]马祖军,张殿业,代颖.再制造逆向物流网络优化设计模型研究[J].交通运输工程与信息学报,2004(2):53-58. [13]孙焰.现代物流管理技术———建模理论及算法设计[M].上海:同济大学出版社,2004. [14]谢家平,赵忠.基于GERT随机网络的废弃回收预测模型研究[J].管理学报,2010(2):294-300. [15]谢家平,葛夫财.基于Markov链的逆向物流回流预测[J].科技进步与对策,2007(10):37-40. [16]吴玉朝,蔡启明,李斌.基于灰色-马尔柯夫模型的逆向物流量预测[J].物流科技,2008(10):19-22. [17]徐剑,张云里,金玉然.废旧电子产品逆向物流的模式决策研究[J].物流科技,2006(4):14-16. [18]易余胤.基于再制造的闭环供应链博弈模型[J].系统工程理论与实践,2009(8):28-35. [19]张颖,陈莎,张敦信.废旧家电及电子产品污染现状及回收治理对策的探讨[C]//.中国环境科学学会.中国环境保护优秀论文集(2005)(下册).北京:中国环境科学出版社,2005. [20]徐滨士,马世宁,刘世参,等.2l世纪的再制造工程[J].中国机械工程.2000(Z1):36-39.